Crash-Consistency Persistent Memory Bug Repair

Yile Gu
University of Michigan

yilegu@umich.edu

Abstract

Persistent memory (PM) is a promising emerging hard-
ware that has better latency than flash SSDs and cheaper
cost than DRAM. Despite its powerfulness, it is still
challenging to develop programs under PM due to the
presence of crash-consistency bugs.

In this project, we propose a new crash-consistency
bug repair tool for PM applications. We utilize bug traces
from crash-consistency bug detection tool Squint [15]
to generate fixes. The bug fixes are dependent on the
transaction mechanism provided by Persistent Memory
Development Kit (PMDK). In terms of fix generation,
we first analyze traces returned from Squint to propose
valid intervals for transaction wrapper. Then we insert
transaction via source-to-source transformation. Evalua-
tions show that our tool is able to fix non-trivial crash-
consistency bugs with minimized manual efforts.

1 Introduction

In recent years, the increasing gap between the perfor-
mance of CPU cache and DRAM memory has triggered
the development of a new hardware: persistent memory
(PM). PM’s access speed sits between cache and tradi-
tional memory, which leads to its duality characteristic:
either as memory or persistent storage. However, PM
requires application developers to explicitly perform
flush and memory fence operations, which may lead
to crash-consistency bugs due to carelessness. Crash
consistency bugs are problematic for crash-consistent
applications, as such bugs can cause data loss or data cor-
ruption. As a common practice, crash consistency bugs
are mainly fixed manually, which takes much time and

Shenyi Wang
University of Michigan

wshenyi@umich.edu

human power, since crash-consistency bugs are often
hard to reason about.

So far, crash-consistency bugs can be divided into two
categories. One is durability bugs (also called missing
flush/fence bugs). Such bugs are caused by an omission
of a cache-line flush or memory fence on first-generation
PM platforms. The other category of crash-consistency
bugs is application-specific bugs, which are caused by
improper ordering between updates to semantically-
related PM data and arise regardless of whether applica-
tions include appropriate PM ordering instructions.

To tackle durability bugs, previous work Hippocrates
[14] was designed to find and automatically fix PM dura-
bility bugs, and many other works can also fix such bugs.
However, there are limited works focus on application-
specific bugs. Prior work Squint [15] is designed to find
application-specific bugs but can’t fix them. Our project
aims to add repair mechanism for Squint to help it au-
tomatically fix application-specific bugs. The core idea
of our project is to use transaction mechanism provided
by PMDK to form transaction blocks that can be rolled-
back. The way we specify block region is to use the event
trace provided by Squint to help locate interval ranges of
inconsistency bugs and insert transaction macro between
intervals to keep them consistent.

Our project is implemented in two parts. The algo-
rithm part is to get temporal insertion position based on
Squint and the insertion engine part uses Clang front-end
to finish source-to-source transformation by inserting
final transaction macro. We evaluate our project on test
programs to show that it is able to generate bug fixes
correctly and efficiently, and the overhead added to pro-
grams is minor.

In the rest of this paper, we first provide background

on persistent memory, PMDK, and Squint. Then we de-
scribe the details of our interval generation algorithm
and transaction macro insertion method. Next, we pro-
vide high-level implementation of our project. After that
we evaluate our project on chosen test programs. Finally,
we introduce related works in crash-consistency bugs
repair, discuss limitations and future work, and conclude
our project.

2 Background

2.1 Persistent Memory Background

Persistent memory (PM) is a novel hardware which al-
lows programs to access data as memory and is directly
byte-addressable, where the contents are non-volatile,
preserved across power cycles. PM is used in conjunc-
tion with memory and storage. Systems containing per-
sistent memory can outperform legacy configurations,
providing faster start-up times, faster access to large
in-memory datasets, and often improved total cost of
ownership.

However, programming PM applications is error-
prone. In order to persist data that are cached in volatile
CPU, developers need to manually flush cache lines to
guarantee that updates reach PM. Moreover, flushing
cache line is a weakly order process, so developers must
use memory fences to regulate the ordering of updates
to persistent memory.

PMDK. The Persistent Memory Development Kit
(PMDK) is a suite of open-source libraries that have
been developed for various use cases. Each library is
tuned, validated to production quality, and thoroughly
documented. These libraries provide stable APIs so de-
velopers can rapidly implement PM features into appli-
cations without worrying about the hardware implemen-
tation details or generational changes.

PMDK provides a powerful mechanism for handling
crash-consistency issues: transaction. Transactions wrap
persistent memory addresses into blocks for protection
and backup values in selected blocks in case of rollback
action. Transaction operations here is the same mech-
anism people usually used in database operation. if a
program crashes during processing a transaction block,
transaction mechanism will roll back the program to the
state before processing this block. Figure 1 provides the
lifecycle of transaction mechanism defined in PMDK.

pmemobj_tx_begin(}

TX_STAGE_NONE

success

Y implicit pmemobj_tx_abort() A 4
N or any pmemobj tc_* failed /7
TX_STAGE_ONABORT J€ { TX_STAGE_WORK

pmemobj tx_process() prmemobj_tx_commit()
pmemobj_tx_process()

A A4

N\ pmemobj_tx_process() Ve
TX_STAGE_FINALLY a3 { TX_STAGE_ONCOMMIT

pmemobj_tx_end() pmemobj_tx_end(}

TX_STAGE_NONE

Figure 1: The lifecycle of PMDK transaction mechanism
from [17]

|

2.2 Crash-Consistency Bugs in PM

The weakly ordered nature of updates from volatile
memory to persistent memory may cause data incon-
sistency. Before data become persistent on PM, they’re
still volatile on CPU. If crashes happen before or dur-
ing data reaching persistent memory, those data which
should have become persistent are still volatile due to
weakly ordered updates. These kinds of problems are
called crash-consistency bugs and they can be fixed by
correctly using flush/fence primitives. There are two
categories of PM crash-consistency bugs:

(1)Durability Bugs. Such bugs are also called miss-
ing flush/fence bugs. They arise due to an omission of
a cache-line flush or memory fence on first generation
of PM platform. The main idea of fixing durability bugs
is intuitive — inserting those missing flush/fence. For
example, Hippocrates [14] can automatically detect and
fix missing flush/fence without harming program’s per-
formance. However, PM platforms equipped with eADR
can automatically fix missing flushes and we will see
the impact of durability bugs decrease as PM hardware
continues to improve.

(2)Application-specific Bugs. Application-specific
bugs are caused by semantically-related PM data which
are updated in an improper ordering. Here the proper
ordering is application-specific, which means the "cor-

[e <IN e SR S S R

rect" ordering derives from semantics that embedded in
specified programs.

Listing 1 illustrates an example bug in this class.
Even though we call PERSISTENT operation for ev-
ery updates, crash happen at line 5 still lead to a crash-
consistency bug. The correct ordering here is first update
array_size and then allocate new array with new size,
Otherwise, if crash happens at line 5, an out of index
illegal memory access may happen after recover, since
the real size of array is inconsistent with the recording
in array_size.
foo () {

delete my_structure->array;
my_structure->array = new int[new_sz];
PERSISTENT (my_structure->array);

// Bug: crash before size is updated

my_structure->array_size = new_sz;
PERSISTENT (my_structure->array_size);

Listing 1: An example of application-specific bug.

2.3 Squint: Crash-Consistency Bug Detection

To help software developers better detect crash-
consistency bugs in PM applications, various PM testing
tools have been proposed in recent years. One of the ma-
jor problems of such tools is that it is difficult to achieve
high test accuracy efficiently. As a result, Squint [15] is
designed to tackle this problem.

Squint is a robust PM crash-consistency testing tool
that scales PM model checking to large PM applications.
Squint identifies update mechanisms of the application
under test by identifying ordering constraints between
PM updates and constructing dependency graphs that
obey the causality of updates. To prevent the ordering
explosion problem, Squint reduces update patterns by
grouping them into representative update mechanisms,
which allows the tool to scale to large applications while
having good testing coverage.

3 Design

3.1 Bug Repair Pipeline Overview

Figure 2 summarizes the overall pipeline of our crash-
consistency bug repair tool. It has three main compo-
nents: bug detector, fixer and verifier. The bug detector
executes target program and generates pairs of trace
events and crash-consistency labels indicating whether

Verifier
Modified

Interval Transaction | Program Squint Bug
Generator Inserter q Solved

Detector Fixer

Target Bug

> Trace
Program Squint 2%,

Checker —>

Figure 2: The overall architecture of our bug repair tool

the program under test is buggy. The fixer digests this
information and produces fixes that modify the source
code program directly. The modified program is com-
piled again and fed into the verifier to test if the existing
crash-consistency bug has been successfully fixed.

In terms of inputs, the users will provide a target
program to test crash-consistency and a checker pro-
gram for detecting crash-consistency violations. If the
target program contains crash-consistency bugs, our bug
repair tool outputs a modified source code program
that has been cross-checked by the verifier to be crash-
consistency bug-free. If not, the program remains un-
modified.

3.2 Bug Detector and Verifier

Given a target program and a checker program, we in-
voke Squint as our bug detector. Squint first runs pmem-
check [17] on the target program to generate a trace of
PM operations which contain stores, cache-line flushes
and memory fences. Then Squint converts the trace into
persistence graphs that reflect PM updates and their cor-
responding orderings. The graphs are optimized into rep-
resentative subgraphs by grouping PM updates from the
same data type and removing redundant graphs. Finally
Squint invokes pmreorder [10] to perform exhaustive
model checking on these optimized subgraphs.

Squint outputs ranges of trace events that it has tested
all of the possible orderings on, and the corresponding
crash-consistency labels. The fixer consumes these out-
puts and produces bug fixes on the target program. After
that, we again invoke Squint as the verifier to ensure that
crash-consistency bugs in the program have been fixed
successfully.

3.3 Transaction Interval Generation

In terms of transaction lifecycle shown in Figure 1, for
simplicity, our transaction created by the fixer will only
contain the TX STAGE WORK block. This is because
that other blocks such as 7X_STAGE_ONABORT are

*‘A=0

FLUSH(A), FENCE() Reorder

START_S(Squint) ?:gdi? 1. {A=0}

:B =0 checking 2.{A=0, B=0}
c=0 —

FLUSH(B, C), FENCE() —»>

END_S(Squint) 4.{A=0, B=0, C=0}

*D=0 5. {A=0, C=0, B=0}

FLUSH(D), FENCE()

Figure 3: A code snippet that Squint tests on, modified
from [15]

usually designed for either logging or bookkeeping in
the case of crash failures. Such bookkeeping operations
need auxiliary information about variables defined in the
program and cannot be directly inferred from the trace
records of flushes, fences and stores.

3.3.1 Difference between Reorder Interval and
Transaction Interval

To explain how to define an accurate interval for transac-
tion, let’s start by looking at an example. Figure 3 shows
a code snippet that Squint tests on. In this case, Squint
has reduced one persistence graph into a representa-
tive subgraph which contains two updates *B = 0 and
*C = 0. Squint inserts START_S and END_S markers
indicating the range to perform exhaustive reordering
by pmemreorder. Let the range between these two mark-
ers be reorder interval, and let the range generated by
the fixer be transaction interval defined by START Tx
and END_Tx markers. One of the key findings is that
the reorder interval and the transaction interval may be
different.

To see this difference, we will walk through the pro-
cess how pmemreorder detects crash-consistency bugs.
At first, pmemreorder persists all states before START _S
marker, and generates ordering by ordered set enumera-
tion to test on. In our example, there will be 5 possible
orderings between START_S and END_S.

If any of the 5 possible orderings generates a crash
state that is not consistent, then Squint will mark this
interval containing updates on B, C as inconsistent. Now
if we consider inserting transaction to solve this crash-
consistency bug, we have to define the locations for
markers START _Tx and END_Tx. A trivial solution
will be to place the two markers at exactly where
START _S and END_S are.

*A=0
FLUSH(A), FENCE()
START_Tx

*A=0
FLUSH(A), FENCE()
START_Tx

*A=0
FLUSH(A), FENCE()

B=0 “B=0 B=0

*C=0 *C=0 =0

FLUSH(B, C), FENCE() || FLUSH(B, C), FENCE() || FLUSH(B, C), FENCE()
END_Tx END_Tx ‘D=0

D=0 D=0 FLUSH(D), FENCE()

END_Tx

FLUSH(D), FENCE() FLUSH(D), FENCE()

(a) (b) (©

Figure 4: Three possible situations for transaction mark-
ers (a) within inconsistent interval (b) before inconsis-
tent interval (c) after inconsistent interval

Define the notation — to reflect the causality rela-
tion “happen before” [6]. For example, X — Y means
X happens before Y. Now if variables B and C possess
causality relation either B — C or C — B, then our trivial
solution will work. This is because that the causality rela-
tion will cause either {A =0,C =0} or {A=0,B=0}to
be inconsistent. However, after the transaction insertion,
the 5 possible orderings are reduced to only 3: {A = 0},
{A=0,B=0,C=0}and {A=0,C=0,B=0}. All of
the 3 orderings are consistent and the crash-consistency
bug is solved.

However, the situation gets more complicated if the
causality relation is, for example, B — A||C. In this
case, putting a transaction around updates on B and C
will not work, because one of the 3 possible ordering
left, {A = 0}, will still be inconsistent after the transac-
tion is inserted. To solve this specific crash-consistency
bug, a START _Tx marker must be placed before up-
date on variable A. Similarly, if the causality relation
is D — B||C, then an END_Tx marker must be placed
after update on variable D.

Figure 4 summarizes the three possible situations to
locate markers for transaction intervals. Given an in-
consistent interval returned from Squint, the transaction
may be inserted directly at the inconsistent interval, the
START _Tx marker may be before START _S marker, or
the END_T x marker may be after END_S marker.

3.3.2 Locating Start and End of the Transaction

To properly define the starting point and ending point of
the transaction, we have to make use of more informa-
tion from the trace events. The key insight is that if an
interval is inconsistent, we have to find a starting point
such that all of the updates before it have been tested
to be consistent and an ending point such that all of the

updates after it have been tested to be consistent.

Formally, define a trace of length n to be T =
[teo,ter,...,te,_1], Where te; indicates the trace event
at timestamp i. Each trace event may be a flush, fence
or store event. The trace returned from pmemcheck
during the test will be a global sequence containing
all of the possible trace events, denote it as Tgpa-
Squint’s partial model checking can be considered as run-
ning consecutive subsequence of the global trace Tgopar-
Let the subsequence be Ty = [te;,teir1,...,t¢i m—1],
and let the corresponding crash-consistency result re-
turned from pmreorder be y, then given a global trace
Tgi0bal, output res from Squint will be a set of sub-
sequence traces with crash-consistency labels: res =
[(Tsoayo)ﬂ(Elayl)ﬂ”'(];nayn)]'

If there exists a subsequence Tf =
[ter,texi1,...,tex+s—1] such that label y; indicates
crash-inconsistency, our fixer will be initiated. To
find an appropriate starting point for transaction
interval, ideally, we want to find a trace event fe; such
that i < k and trace T; = [tep,tey,...te;] is consistent.
However, finding this starting point requires us to
traverse backward linearly. And each time pmemreorder
tests crash-consistency on this given trace, there is an
exponential time complexity that hinders performance
greatly.

3.3.3 Heuristic Algorithm for Transaction Interval
Finding

To tackle this performance issue, we introduce a heuris-
tic algorithm to help speed up the generation process.
Define C to be the envelope operation. If there exist
two subsequences of traces T, = [tem,temi1,...temri—1]
and T, = [ten,tey 1, ...tent j—1), such that te,, happens at
least as early as e, (i.e. m < n) and e, ;| happens at
least as early as te,, ;1 (i.e.n+j—1 <m-+i—1), then
T, is enveloped by T,,,i.e. T, C T,,.

Since Squint has tested many instances of subse-
quences of global trace, we could utilize this information
without incurring additional pmreorder testing. Given
an inconsistent interval Ty = [tey,tefy1,...,te 1], We
want to find a consistent tuple in Squint’s result (7, =
[tec,teci1,...,tectj—1],yc) € res such that T, is tested
strictly before Ty (i.e. ¢+ j—1 < f) and the ending
point of T¢ is as late as possible (i.e. c+ j— 1 as large as
possible). To do so, define the subsequence from times-
tamp O to f (head of the inconsistent interval) to be

To—y = [teo,tey, ...,tes], we first find the candidate set of
subsequence traces S = [T.), T, ,...TX] where each sub-
sequence is enveloped by 7o (i.e. TC" C To—), then we
choose the subsequence in candidate set with the largest
ending point timestamp. This ending point of trace event
will be used as the starting point for our transaction in-
sertion, denote it as fey,,, because we know to the best
our knowledge that until this point the program is still
crash-consistent and the crash-consistency bug is not
involved yet.

We use the similar approach to find the ending point
for our transaction interval. Suppose global trace has n
events, then define the subsequence from tail of the in-
consistent interval timestamp f+i—1ton—1 to be
Tt—eng = [tefyi-t1,tefii,...,tey—1]. We find the candi-
date set E = [TQ,T4,...T¥] where each subsequence is
enveloped by Tr_.nq (i.€. Tb’f C Tf—ena)- Then we choose
the smallest starting point within the candidate set to
be the ending point of our transaction interval, denoted
as teqnq. This is again because we know to the best our
knowledge that until this point the program has returned
to be crash-consistent, and the crash-consistency bug
has been all involved.

We pair (tegqrs,teenq) as the proposal of interval for
transaction insertion. The stack information in the trace
events contains corresponding source file and line that
will be utilized to insert transaction.

3.3.4 Transaction Interval Reduction

One of the optimizations for transaction interval genera-
tion is that it is possible to further shrink down length of
our proposal. This is because that Squint constructs test
cases that are separated by data types, which may not be
the minimized interval of inconsistency.

For example, consider a proposal of transaction in-
terval (i.e. a specific subsequence of trace events) 7}, =
[tem,temit,...tem+i—1]. If we want to make the starting
point of this interval more accurate, we could generate
set S of test cases linearly from the original starting
point: S = [(tem), (tem,tems1), (tem,temit temin), ms
where each element in the set is a subsequence of 7,,
that involves the original starting point. We then invoke
pmreorder to test all cases in the set. To optimize the
starting point, we pick the longest test case in set S that
is consistent, say (e, f€m+1,---,t€m+k), and assign the
trace event with greatest timestamp fe,, ¢ to be the new
starting point. It is safe to do so because we know that

until ze,+ the program is still crash-consistent. The
similar approach can be taken to optimize the ending
point.

3.4 Transaction Insertion

The process of transaction insertion is a source-to-source
transformation by inserting PMDK transaction macro
into source file. So, we use Clang [7] front-end as our
tool to analyze abstract syntax tree (AST) of source file
and transform source file to a modified version. First,
we use temporal positions obtained from Section 3.3.4
to approximately locate the position to insert transaction
macro. Next, we need to modify the inserting position
to an appropriate place based on AST context in order
to keep the correctness of programs’ semantics.

34.1 Assumption

Based on our observation, intervals usually just span
multiple lines and are usually included in the same func-
tion scope. It’s rational to induce this observation to the
following assumptions:

e START Tx and END_TXx that are used to indicate
transaction blocks will not appear in different files.

* In order to specific rollback regions of transaction
operation, START _Tx and END_Tx will not appear
in different stack levels of function calls.

With these two assumptions, we could consider that
START Tx and END_Tx will only appear in the same
function scope.

3.4.2 Transaction Macro in PMDK

As mentioned in Section 3.3, PMDK provides transac-
tion mechanism that wraps program code into transac-
tion block by predefined transaction macro. For simplifi-
cation, we only use macro 7X_BEGIN and TX_END, and
they are regarded as final insertion position. START Tx
and END_TXx are regarded as temporal insertion position
respectively. We derive final insertion position through
temporal insertion position. The derived relations are
shown as below.

After determining final insertion position, the next is
to insert transaction macro into source file. Listing 2
illustrates insertion process by pseudo code.

AW =

O 00 1 O D B~ Wi =

TX_BEGIN (pop) {
specify_memory_region_for_rollback ();
/+ transaction block #*/

} TX_END

Listing 2: Pseudo code for usage of transaction macro.

3.4.3 Correctness of Semantics

Since we insert macro 7X_BEGIN and TX_END to spe-
cific transaction blocks, we need to avoid semantic errors
after insertion. Inserting macros in different scope will
cause semantic errors because insertion may destroy
original semantic structure, leading to compiling errors.
Given START Tx and END_Tx, we use Clang front-
end to analyze local AST structure on temporal insertion
position and derive final insertion position.
Listing 3 illustrates an error of inserting macro in
different program scope.
foo () {
// Suitable position for TX_BEGIN
if (/% condition =/){
TX_BEGIN (pop) {
specify_memory_region_for_rollback ();
/% code */

}
} TX_END

Listing 3: An error for macro insertion.

4 Implementation

We implement our project as two part. The first part is
the algorithm to get temporal insertion position and the
second part is the insertion engine to finish transaction
macro insertion. The algorithm part was implemented
in ~ 300 lines of Python and the insertion engine part
was implemented in ~ 500 lines of C++. The algorithm
part uses Squint [15] to generate PM trace, during this
process it utilizes pmemreorder to reduce temporal in-
sertion region. The engine part uses Clang front-end to
perform AST analysis.

5 [Evaluation

The evaluation of our bug repair tool is carried out in
mainly three dimensions: correctness, performance and
efficiency. For correctness, we use our own test examples
and test cases from PMDK to see if transaction insertion

Test Case Before | After

Out of Order 5bugs | 1* bug

Array Alloc (PMDK v1.8) | 11 bugs | 0 bug
Array Realloc (PMDK v1.8) | 1 bug 0 bug
Array Free (PMDK v1.8) 5 bugs | 5 bugs

Table 1: Correctness evaluation of the target program
after transaction insertion

Test Case Before | After

Out of Order 0.041s | 0.049s

Array Alloc (PMDK v1.8) | 0.064s | 0.075s
Array Realloc (PMDK v1.8) | 0.064s | 0.065s
Array Free (PMDK v1.8) | 0.067s | 0.069s

Table 2: Performance comparison of the target program
before and after transaction insertion

is able to fix crash-consistency bugs. For performance,
we test the runtime overhead of adding transaction to
the program. For efficiency, we evaluate how much time
the tool needs to generate the intervals and fix the bugs.

5.1 Correctness

We design a crash-consistency bug test case called “Out
of Order”, which is referenced from [19]. In this test
case, a counter for a customized structure is updated
before the structure itself is updated, creating a crash-
inconsistent image if the crash happens between the two
updates. To demonstrate the generalizability of our tool,
we also pick test cases for “Array” structure from PMDK.
We run Squint on the original programs and the modified
programs after transaction insertion.

Table 5.1 shows the comparison of number of bugs
detected by Squint. In test cases “Out of Order”, “Array
Alloc” and “Array Realloc”, our bug repair tool success-
fully solves crash-consistency bugs by inserting trans-
actions. Although in test case “Out of Order” there still
lefts 1 bug detected by Squint after our bug fix, we inves-
tigate the bug information generated by Squint and find
out that it is due to a crash happened at PM file creation,
which is technically not a crash-consistency bug we are
interested in.

For test case “Array Free”, our repair tool does not

generate any transaction interval despite the presence
of bugs. We take a look at the bug information and find
out that stack traces for these bugs lead to library files
in PMDK. However, our tool currently only supports
generating bug fixes in the files specified by users.

5.2 Performance

Next we evaluate how much runtime overhead transac-
tions will add to the program. For each test case we have
used in Section 5.1, we measure the execution time of
the original program and the modified program after
inserting transactions.

Table 2 summarizes the performance comparison be-
tween two versions of programs. The transactions added
produce minor execution overhead for the target pro-
grams. In the best case , for test case “Array Realloc”,
the execution time for modified program takes longer
than the original by 1.6%. In the worst case, for test case
“Array Alloc”, the execution time for modified program
takes longer than the original by 19.5%.

5.3 Efficiency

Finally we evaluate how much time it takes for our repair
tool to generate transaction intervals and fix the program.
For each test case used in 5.1, we measure the process
time of using heuristic algorithm to generate intervals,
reducing intervals via pmreorder and inserting transac-
tions to the program separately. Table 3 summarizes the
process time of each submodule.

We observe from the results that reduction phase takes
the longest process time. Compared to reduction, the
time it takes to generate intervals and insert transactions
is negligible. This is expected because pmreorder uses
exhaustive model checking to emulate all possible or-
derings within the given range. A possible optimization
is to provide an option for the users indicating whether
or not to skip reduction process, because reduction on
intervals only affects performance of our bug fix but not
the correctness.

6 Related Works

Bug detection. The research community has proposed
many systems on application testing and bug detec-
tion [1-3, 12, 13]. PMTest [11] is a trace-validation
framework, where each PM operation produces a trace

Test Case Heuristic | Reduction | Insertion | Total
Out of Order 0.057s 6m32s 0.124s 6m32s
Array Alloc (PMDK v1.8) 0.011s 10m50s 0.357s | 10m50s
Array Realloc (PMDK v1.8) | 0.013s 3m4ls 0.103s 3m4ls
Array Free (PMDK v1.8) N/A N/A N/A N/A

Table 3: Execution time comparison for each stage of our algorithm

event which is asynchronously validated to detect a dura-
bility bug. Some other tools are based on binary instru-
mentation. Pmemcheck [17] is a binary instrumentation
tool designed by Intel for PMDK, which is based on
valgrind. Agamotto [16] is a generic and extensible sys-
tem for discovering misuse of PM in PM applications.
Squint [15] detects application-specific bugs in PM us-
ing model checking on update mechanisms that are used
by applications.

Bug repair. Many works have been done on auto-
mated bug repair [4, 5, 8,9, 18]. They either target at
performing general-purpose repair or solving specific
issues such as concurrency bugs. Hippocrates [14] is
an automated PM durability bug fixing system with no
harm to program after repair. Hippocrates produces fixes
that are functionally equivalent to developer fixes.

7 Discussion

There still exist several drawbacks for our bug repair tool.
Currently our tool only fixes crash-consistency bugs via
source code modification, supporting C/C++ languages.
This limits the types of programs our tool is able to
solve. What is more, it is difficult to combine durability
bugs fixed by Hippocrates with our fixes because Hip-
pocrates generates fixes on Intermediate Representation
(IR). A solution to make our tool more programming-
language agnostic is to also insert transactions at IR by
LLVM Pass. However, this is challenging because we
are not aware of how transaction mechanism provided
by PMDK is translated into IR during compiling.

It is also possible that the starting and ending points
of our transaction interval are in different functions and
even different files. In our bug repair tool, we use stack
information to find an optimized fix that lies in the same
function. If no such fix is found, we skip the interval gen-
eration as the candidate fixes may affect correctness of

the program. This is partly because that Squint generates
test cases by data types, so consistent intervals may be
far from an inconsistent interval. One solution is that we
use inconsistent interval as the transaction interval when
it contains partially crash-consistent test cases. However,
the bug fixes we generate may not be useful in this case.

8 Conclusion

In this project, we propose a new crash-consistency bug
repair tool for PM applications. We take advantage of
both trace generated from Squint and transaction mecha-
nism provided by PMDK. We design algorithm to deter-
mine the interval for transaction insertion efficiently, and
use source-to-source transformation to repair the pro-
gram. We evaluate our tool on crash-consistency bug test
cases to demonstrate its effectiveness. We believe that
our bug repair tool could help advance the development
of comprehensive PM bug fixing toolchain.

References

[1] Recon: Verifying file system consistency at run-
time. In /0th USENIX Conference on File and
Storage Technologies (FAST 12), San Jose, CA,
February 2012. USENIX Association.

[2] Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, An-
gela Demke Brown, and Ashvin Goel. Checking
the integrity of transactional mechanisms. In /2th
USENIX Conference on File and Storage Technolo-
gies (FAST 14), pages 295-308, Santa Clara, CA,
February 2014. USENIX Association.

[3] Travis Hance, Andrea Lattuada, Chris Hawblitzel,
Jon Howell, Rob Johnson, and Bryan Parno. Stor-
age systems are distributed systems (so verify them
that Way!). In /4th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI

[10]

[11]

20), pages 99—-115. USENIX Association, Novem-
ber 2020.

Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu,
and Ben Liblit. Automated atomicity-violation
fixing. In Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, PLDI 11, page 389400,
New York, NY, USA, 2011. Association for Com-
puting Machinery.

Guoliang Jin, Wei Zhang, and Dongdong Deng.
Automated Concurrency-Bug fixing. In 10th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 221-236,
Hollywood, CA, October 2012. USENIX Associa-
tion.

Leslie Lamport. Time, clocks, and the ordering
of events in a distributed system. Commun. ACM,
21(7):558-565, jul 1978.

Chris Lattner. Clang: a ¢ language family frontend
for llvm. September 26, 2007.

Claire Le Goues, Michael Dewey-Vogt, Stephanie
Forrest, and Westley Weimer. A systematic study
of automated program repair: Fixing 55 out of 105
bugs for $8 each. In 2012 34th International Con-
ference on Software Engineering (ICSE), pages
3-13,2012.

Claire Le Goues, ThanhVu Nguyen, Stephanie For-
rest, and Westley Weimer. Genprog: A generic
method for automatic software repair. IEEE Trans-
actions on Software Engineering, 38(1):54-72,
2012.

Weronika Lewandowska. Pmreorder basics. Feb
2015.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh
Kolli, and Samira Khan. Pmtest: A fast and flexible
testing framework for persistent memory programs.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS
’19, page 411-425, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Ashlie Martinez and Vijay Chidambaram. Crash-
Monkey: A framework to automatically test File-
System crash consistency. In 9th USENIX Work-
shop on Hot Topics in Storage and File Sys-
tems (HotStorage 17), Santa Clara, CA, July 2017.
USENIX Association.

Jayashree Mohan, Ashlie Martinez, Soujanya Pon-
napalli, Pandian Raju, and Vijay Chidambaram.
Finding Crash-Consistency bugs with bounded
Black-Box crash testing. In /3th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 33-50, Carlsbad, CA,
October 2018. USENIX Association.

Ian Neal, Andrew Quinn, and Baris Kasikci. Hip-
pocrates: Healing persistent memory bugs without
doing any harm. In Proceedings of the 26th ACM
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, ASPLOS 2021, page 401-414, New York,
NY, USA, 2021. Association for Computing Ma-
chinery.

Ian Neal, Andrew Quinn, and Baris Kasikci. You
can find persistent memory bugs if you squint hard
enough! 2022.

Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci.
AGAMOTTO: How persistent is your persistent
memory application? In /14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 1047-1064. USENIX Associa-
tion, November 2020.

PMDK. An introduction to pmemcheck. 2015.

Seemanta Saha, Ripon K. Saha, and Mukul R.
Prasad. Harnessing evolution for multi-hunk pro-
gram repair, 2019.

Steve Scargall. Programming Persistent Memory:
A Comprehensive Guide for Developers. 01 2020.

	Introduction
	Background
	Persistent Memory Background
	Crash-Consistency Bugs in PM
	Squint: Crash-Consistency Bug Detection

	Design
	Bug Repair Pipeline Overview
	Bug Detector and Verifier
	Transaction Interval Generation
	Difference between Reorder Interval and Transaction Interval
	Locating Start and End of the Transaction
	Heuristic Algorithm for Transaction Interval Finding
	Transaction Interval Reduction

	Transaction Insertion
	Assumption
	Transaction Macro in PMDK
	Correctness of Semantics

	Implementation
	Evaluation
	Correctness
	Performance
	Efficiency

	Related Works
	Discussion
	Conclusion

