Combining Data Privacy and Byzantine Resilience in Distributed Machine
Learning

Qingyi Chen
University of Michigan

chengy@umich.edu

Abstract

Our project investigates how to practically combine data
privacy and Byzantine resilience in distributed machine
learning. Our work is inspired by [11], where the paper
predicts that the training batch size b must grow as fast as
the square root of the parameter size d to achieve both data
privacy and Byzantine resilience. However, this conclusion,
when applied on large neural network, yields unrealistically
large batch size, making it impossible to combine data pri-
vacy and Byzantine resilience. Therefore, in this project, we
will verify and examine the original paper’s idea, then ex-
periment with an alternative data privacy algorithm other
than the one used in the original paper. Finally, we will
revisit the role of batch size in combining data privacy and
Byzantine resilience and argue that batch size does not need
to grow infinitely as parameter size grows. Therefore, it is
possible and practical to combine data privacy and Byzan-
tine resilience, even for huge neural networks.

1. Introduction

Machine learning (ML) is currently a widely researched
field to generalize data and make predictions for a wide
range of applications. However, modern neural network
models are usually trained with huge number of parameters
up to the magnitude of billions, using massive data. There-
fore, to relieve the stress of computation time and compu-
tation resources on a single machine, distributed machine
learning systems are introduced and put into practice.

Distributed machine learning (distributed ML) is multi-
node machine learning systems that are designed to improve
performance, increase accuracy and scale to larger input
data sizes[8]. Multiple nodes in a distributed system will
collaborate and train on the dataset collectively, producing
a joint model. There are several challenges in designing
such distributed machine learning systems, including high
requirement of network bandwidth, synchronization and la-
tency of the system[16]. In this project, we will be specif-

Yile Gu
University of Michigan

yilegu@umich.edu

Lilong Teng
University of Michigan
lilongtQumich.edu

Byzantine

workers
Honest

workers

Curious
parameter
server

Parameter
server

(a) b)

Figure 1: Parameter server model, credits to [1 1] (a) trusted
parameter server with 8 honest workers (b) honest but curi-
ous parameter server with 8 workers, including 3 Byzantine
nodes

ically dealing with the problem of data privacy, Byzantine
resilience, and combining them in the context of distributed
ML.

Our distributed ML scheme is formulated as follows and
illustrated as 1, borrowing the picture from [11]. At the
beginning of each iteration, a central trusted entity, the pa-
rameter server[!6], sends to the nodes the current model
(parameters). The nodes then compute their own gradients
with their own data using Stochastic Gradient Descent algo-
rithm (SGD), and send their gradients back to the parameter
server, where the parameter server collects and aggregates
the gradients to update the model parameters.

This scheme, while serves well the purpose of distribut-
ing work among multiple workers and thus accelerating
learning, also gives rises to two major problems: data pri-
vacy and Byzantine gradients. As our problem setting, we
consider the possibility of an honest-but-curious parameter
server that might take advantage of the gradients from nodes
to steal data, and the possibility of Byzantine workers that
might send Byzantine gradients to interfere learning.

1.1. Data Privacy

In our distributed ML model, it is imperative that nodes
send gradients to the central parameter server. However,
this causes undesired potential leakage of each nodes’ own
data, as gradients are known to leak original data[21].

1.2. Byzantine Gradients

Byzantine nodes, or faulty nodes in the system may send
two types of Byzantine gradients: erroneous gradients that
does not represent the true training data due to arbitrary
faults, or malicious gradients that attempts to poison the
learning on purpose [|1]. The existence of either type of
Byzantine gradients may prevent the model from converg-
ing, and thus the model does not reach a satisfying state
with accuracy close to that trained in a fault-free system.

2. Related Work
2.1. Data Privacy in Distributed Machine Learning

Communicating with gradients is the main method of
distributed SGD, and the gradients are previously believed
to be safe to share. Therefore, collaborative learning com-
municating with gradients are widely used in studies where
training data should remain private, such as training medical
models using patient data among hospitals [13]. However,
[21] points out that the publicly shared gradients in fact con-
tain information of the private training data, and the recov-
ery could be pixel-wise accurate for images and token-wise
for texts. They develop the DLG attack[? |] demonstrating
how a curious parameter server can steal all training data
from received gradients.

In response, there are several implementations of dis-
tributed SGD designed to preserve data privacy, one of
which is noise injection. Gaussian or Laplace noise is in-
jected to the gradients so that differential privacy (DP) can
be preserved [11]. For any of two adjacent data batches &
and £’ and any possible output set O, a randomized algo-
rithm M is (e, 0)-differentially private if

PM(&) € O] <ef x PIM(E) € O]+ 46 1)
where € > 0 and 6 € [0, 1].

2.2. Byzantine Fault Tolerance in Distributed Ma-
chine Learning

In a distributed system, some of the nodes may be unre-
liable and perform Byzantine behaviors. Therefore, Byzan-
tine attacks are developed to test the robustness of dis-
tributed ML systems. Two state-of-the-art attacks, A Liz-
tle is Enoughl[1] and Fall of Empires[19] use the same core
principle as follows: at each step ¢, each Byzantine worker
submits the same Byzantine gradient g, +va;, where g, is an
approximation of the real gradient VQ (wy), a; € R is an
attack vector depending on the type of attack, and v € R*
is a non-negative constant [11].

To make a distributed system Byzantine-resilient, gradi-
ent aggregation rules (GAR), such as Krum[2], MDA[7],
and Median[20] are designed to tolerate a limited degree
of Byzantine failures in the system [|1]. In our study, we
will follow MDA as the aggregation rule in the parameter

server. We use (a, f)-Byzantine resilience introduced by
Blanchard et al. [3] as a standard for a GAR system that
tolerates up to f Byzantine failures.

2.3. Combining Data Privacy and Byzantine Re-
silience in Distributed Machine Learning with
SGD

Guerraoui et al. mentions a sufficient condition in [11]
that ensures Byzantine resilience. It is an inequality called
variance-to-norm ratio (VN ratio) [11]. Combining differ-
ential privacy and («, f)-Byzantine resilience based on VN
ratio introduces a bound that limits the size of the model and
the batch size. The VN ratio can only hold when the batch
size is big enough or the proportion of Byzantine nodes is
small enough [1 1], and thus differential privacy and Byzan-
tine resilience is not always compatible.

Guerraoui et al. recently proposed a relaxation of the VN
condition, called n-approximated VN condition, and a hy-
perparameter optimization (HPO) scheme to combine data
privacy and Byzantine resilience by experimenting on neu-
ral networks [10]. Compared to regression models, neural
networks usually have more data points for each training
data. The experiment using neural networks shows that
though combining differential privacy and Byzantine re-
silience is possible, it is extremely expensive, and the batch
size is still the bottleneck.

3. Methods

We start by studying and developing theoretical up-
per bounds for combining data privacy and Byzantine re-
silience. We use Gaussian noise injection[6] to provide pri-
vacy for the gradients submitted to the master. Experiments
based on theoretical findings show that batch size is the key
factor to ensure training convergence of the SGD algorithm.
We then conduct further experiments to study the effects
of using alternative data privacy measures such as gradient
sparsification[21]. At last, we revisit the batch size from a
theoretical view and demonstrate that the reason why batch
size is important lies in its effect on data privacy instead of
guaranteeing Byzantine resilience. In light of this observa-
tion, we argue that while a large batch size is important for
the model to converge in the context of combining Data Pri-
vacy and Byzantine resilience, the demand on the batch size
is not unlimited; instead, a certain (even a large constant)
batch size is good enough: it does not need to unboundedly
grow with model’s parameter size.

3.1. VN ratio condition: Is it the necessary condi-
tion?

VN ratio condition [17] is a sufficient condition for a
GAR F' to provide («, f)—Byzantine resilience, where « is
the vector angle bound to ensure that the true gradient and

the aggregated gradient via GAR are sufficiently close and
f is the number of workers tolerable to be Byzantine.

Let G be the gradient to submit to the master at time ¢,
then by definition of SGD algorithm E [G,] is equal to true
gradient V@) (w;), where @ is the cost function to optimize
for ML problem and wy is the set of weight parameters for
the model at time ¢. The VN ratio condition is given by

JE I -G
]

VN ratio condition states that the standard deviation of

the submitted gradients should be smaller than the true gra-
dient multiplied by a constant k., (n, f) that is dependent on
specific GARs [2, 7].
VN ratio condition with differential privacy To com-
bine data privacy with Byzantine resilience, [1] derives re-
lationship between Byzantine tolerance and model settings
such as number of trainable parameters and batch size. They
chose Gaussian noise injection to provide differential pri-
vacy. Let b be the batch size of a ML model, n be the total
number of distributed workers and d be the total number
of trainable parameters in the ML model. Table 1 shows
the upper bounds for various GARs concluded from [11] to
satisfy the VN ratio condition.

One key takeaway is that when combining VN ratio con-

dition with differential privacy, the batch size of the model
has to be at least in the order of square root of number of
parameters to guarantee («, f)—Byzantine resilience. This
is hardly a feasible condition to match for current hardware,
since typical deep learning models like ResNet-50[| 2] have
dozens of millions of trainable parameters, resulting in a
batch size typically greater than 1000.
Relaxing the VN ratio condition Since the VN ratio
condition only serves as a sufficient condition for Byzan-
tine resilience, the relationships given in Table | are not
the tightest bounds. [10] provides theoretical insights to
relax the VN ratio condition. Let 1 be a threshold for gra-
dient, define n—approximated VN condition as below. For
1 > 0, the n—approximated VN condition is satisfied if for
all [E[G(6)]]| > n.

rr(n, f)E (|G, - E[G|1?] < [[E[GJI? 3

The main difference to the original VN condition is that
now a subset of gradients smaller than the threshold (and
assumed to be close to optimized minimum) does not abide
the inequality. Let v be the standard deviation of the loss
function in the ML model. It is then concluded that if no

Gaussian noise is injected, the n—approximated VN condi-

tion holds true for > (ﬁ)v, thus the convergence of

n—f

training of the model is independent of batch size.

Krum([2], Bulyan[7] MDA[7]
b € Q(v/nd) geo(ﬂzb)

Table 1: Upper bounds for various GARs to satisfy the VN
condition.

Despite theoretical improvements on upper bounds of
the problem, combining Byzantine resilience with data pri-
vacy still imposes requirements on batch size to ensure the
convergence of the training of SGD algorithm. [I1] only
verifies their findings on a simple logistic regression model.
We think it is crucial to conduct in-depth experiments on
various ML models with different batch sizes for the em-
pirical upper bounds of batch size. The experiment results
are introduced in 4.1. We find out that in the presence of
gradient attacks, the batch size needed to achieve the same
accuracy as the vanilla model is increased by at least two or-
ders of magnitude, verifying that it is non-trivial to combine
Byzantine resilience with data privacy.

3.2. Besides Gaussian Noise: Gradient Sparsifica-
tion as the Data Privacy Algorithm

While the VN condition for combining data privacy
and Byzantine resilience is verified to hold through ex-
periments, [11] bases their proof and experiments only on
Gaussian Noise as their data privacy algorithm. Notably,
it is exactly the noise to ensure data privacy that intro-
duces the term regarding batch size b into the originally data
privacy-free VN condition, and yields the new VN condi-

tion Ti €0 (\/El’er
ine whether this new VN condition is a drawback specific
to Gaussian Noise algorithm, we conduct experiments with
another data privacy algorithm mentioned in [21], “Gradi-
ent Compression and Sparsification”.

Specifically, we apply gradient sparsification where
components of small magnitude in the gradients are pruned
to zero. As suggested in [5], this is done by choosing a
fixed proportion of gradient to prune (note that pruning is
done separately within positive and negative components).
Also, [21]’s experiments have shown that a portion of 20%
is sufficient to defend against data privacy attacks, so we
choose the proportion to be 25%.

As shown in the experiments though, using gradient
sparsification as the data privacy algorithm does not demon-
strate an independence of performance from batch size.
Large batch size is still the key factor to enable the model
to learn well when combining data privacy and Byzantine
resilience. To make sense of it, we argue that gradient spar-
sification can be viewed as another form of noise whose ef-
fect is cancelling the small components in gradients to zero.

). Therefore, in an attempt to exam-

Therefore, it is essentially similar to Gaussian noise algo-
rithm, and original conclusion applies: a large batch size is
important in order for the model to learn well.

3.3. Revisiting Batch Size in Combining data pri-
vacy and Byzantine resilience

Although we’ve replaced Gaussian noise injection with
gradient sparsification, the batch size of model remains to
be the key factor ensuring training convergence of the SGD
algorithm. This observation urges us to revisit the effect
of batch size in combining data privacy and Byzantine re-
silience.

Augmented VN condition for differential privacy Re-
call that Table 1 lists theoretical upper bounds for various
GAREs to satisfy the VN ratio condition. It is important to
realize how to derive these bounds from a single inequal-
ity. In the VN ratio condition, E {HGt -E [Gt]||2} is the
variance of the submitted gradient. Notice that if we ac-
count for Gaussian noise in gradients, then G; = G} + Oy,
where G} is the original submit gradient, and O; is the
Gaussian noise with mean equals to 0 and standard devia-
tion 5 = 25maxy 2b10g(1.25/()) , where G4, is the maximum

possible value of g;adient in the model and § and € are two
hyperparameters for Gaussian noise (this is also known as
(e, 9)-differential privacy). Then the left side of Equation 2
can be simplified as:

s _ s 2
VElIGi+0i-ElGi +0F] oo

IE[G; + O " E[G; + Ol

B \/Var[Gf] + Var[O]
B [GHI
Now if we plug in the value for variance of noise, we
obtain the augmented VN condition for differential privacy:

VE[IGE ~EGIF] + 8% 10g (1)
IE G
Compared to the original VN condition in Equation 2,
the only additional term is the variance of noise on the de-
nominator. And since variance is always positive, adding
this term increases the left side of the equation and makes
satisfying the VN ratio condition more difficult. More im-
portantly, the variance of Gaussian noise is inversely pro-
portional to the square of batch size b. Therefore, as batch
size increases, the variance of noise decreases, making it
more possible to be bounded by kg (n, f).
Therefore, we are safe to conclude that it is due to pre-
serving differential privacy that batch size is included in the
VN condition to guarantee Byzantine resilience.

< kp(n,f)

Increasing batch size is sufficient to preserve data pri-
vacy We continue to study if it is necessary to introduce
Gaussian noise during training for data privacy. [21] is the
first to raise awareness of data leakage from gradients. It is
possible to recover original training image by training a net-
work that minimizes between the original gradient and the
constructed gradient. Another finding is that as the batch
size increases, the number of training steps needed to re-
cover the original image grows in factorial.

[9] is able to conduct a scalable experiment on recon-
structing training images from gradients for various batch
sizes. We conduct an experiment in 4.3 to study how batch
size affects reconstruction of data.

Our key finding is that when batch size is large, it is in-
feasible to reconstruct original images from gradient. This
is because either the network returns meaningless noise, or
the time it takes for reconstruction is unrealistic in a dis-
tributed ML setting. Therefore, we conclude that it is suffi-
cient to increase batch size for preserving data privacy.

[11] states that batch size has to grow with model’s pa-
rameter size in order to combine data privacy and Byzan-
tine resilience. Their conclusion is derived from Gaussian
noise injection which binds batch size with VN condition to
guarantee Byzantine resilience. This makes the model vul-
nerable to gradient attacks when Gaussian noise is present.
Therefore, enlarging batch size makes sure that the servers
have stronger Byzantine resilience. However, we observe
that batch size should serve as the measure to preserve data
privacy instead of guaranteeing Byzantine resilience, and
thus Gaussian noise injection is not necessary when batch
size is large. As a result, batch size does not grow with
respect to model’s parameter size and is not necessarily
bounded by the upper bounds in Table 1.

4. Experiments
4.1. Verification of VN Condition

An implication of Table 1 is that, in the context of com-
bining data privacy and Byzantine resilience, in order for
the model to converge (learn well), the batch size must be
large enough. Therefore, we conduct experiments and plot
the learning process of the model using different data pri-
vacy (as differentiated by €), Gradient Aggregation Rules
(as “Average” or “MDA”), and Byzantine attacks (for ex-
ample, little[|] and empire[| 9] attack) versus various batch
sizes. Note that when averaging is used as the Gradient Ag-
gregation Rule, we take it as the baseline and no attacks
are present; otherwise, among n = 11 servers, f = 5
are Byzantine. The model applied here is a basic Convolu-
tional Neural Network (CNN), and the dataset it is learning
is MNIST[4], a simple dataset of numbers from O to 9.

The plots on CNN without data privacy (i.e., €
oo for Gaussian noise) on different batch sizes b =

10, 50, 100, 500 are presented as 2a, 2b, 2c, 2d, respectively.

|
|
|
‘\
\

508 3/
@o.a |
& 041/
84 —— Average (no attack) —— Average (no attack)
Soal MDA (ittle) MDA (iittle)
f MDA (empire) MDA (empire)
%% 200 400 600 800 1000 200 400 600 800 1000
Step number Step number
(@b=10 (b) b =50
1 S - S— - -
5.0
30
&o.
4 —— Average (no attack) —— Average (no attack)
So. MDA (ittle) MDA (iittle)
MDA (empire) MDA (empire)
200 400 600 800 1000 200 200 600 800 1000
Step number Step number

Figure 2: Training process of CNN with no Gaussian Noise
and batch size b = 10, 50, 100, 500

The plots on CNN with strong data privacy (i.e., € =
0.2 for Gaussian Noise) on different batch sizes b =
10, 50, 100, 500 are presented as 3a, 3b, 3c, 3d, respectively.

10 1
—— Average (no attack) —— Average (no attack)
%08 MDA (iittle) 708 MDA (iittle)
d MDA (empire) g MDA (empire)
3os gos e — SEA
o4 04 s
g g ==
Soz L Soz2
PP — S Ve
00 0.
260 400 600 800 1000 260 400 600 800 1000
Step number Step number
10 1 —
508 e AN 508|
g — g [
So06 e ~=" — Average (no attack) So6l/
g MDA (ittle) g
504 MDA (emplee) 4 —— Average (no attack)
8o2l/ 5 MDA (littie)
f MDA (empire)
00 !
o 260 400 600 800 1000 2060 200 600 800 1000
Step number Step number

Figure 3: Training process of CNN with Gaussian Noise
and batch size b = 10, 50, 100, 500

The plots verify that:

1. The introduction of data privacy hinders the model’s
learning (even without Byzantine gradients). Com-
paring the model’s learning process with and without
noise as 3a and 2a, we can see that the model is learn-
ing much better without Gaussian Noise.

2. Larger batch size recovers model’s learning ability.
As the batch size grows as 3a, 3b, 3c, 3d, model is
performing better with all the Gradient Aggregation
Rules.

Also, we conduct similar experiments on another ma-
chine learning model - Support Vector Machine (SVM).
SVM features simpler structure and fewer parameter size,

so it is worthwhile to examine if fewer batch size will work
for SVM. The dataset it is trained on is phishing dataset',
a dataset collecting legitimate as well as phishing website
instances.

The plots on SVM without data privacy (i.e., € =
oo for Gaussian Noise) on different batch sizes b =
10, 50, 100, 500 are presented as 4a, 4b, 4c, 4d, respectively.

10 L0
] S S B e e |
508 >0.8
4 g
5061 506
g8 g
2oal 204
"] —— Average (no attack) # " | —— Average (no attack)
82! MDA (little) So2 MDA (iittle)
MDA (empire) MDA (empire)
0.0 0.0
0 200 400 600 800 1000 200 200 600 800 1000
Step number Step number
10 10
5081 / 508
e g
3064 3069
Ll
g “*1 —— Average (no attack) @ "% —— Average (no attack)
So2! MDA (iittle) 502 MDA (ittie)
MDA (empire) MDA (empire)
0.0 0.0
0 200 400 600 800 1000 200 200 600 800 1000
Step number Step number
()b =100 (d) b =500

Figure 4: Training process of SVM with no Gaussian Noise
and batch size b = 10, 50, 100, 500

The plots with strong data privacy (i.e., € = 0.2 for Gaus-
sian noise) on different batch sizes b = 10, 50, 100, 500 are
presented as 5a, 5b, 5c, 5d, respectively.

10 10
——
508 508 /
& e R g
306 ’/ == Sos
3 3
4 041 average (no attack) ﬁ“ —— Average (no attack)
8ozl MDA (ittle) 802 MDA (little)
MDA (empire) MDA (empire)
0.0 ! : X X 00 I : |
o 200 400 600 800 1000 200 400 600 80 1000
Step number Step number
(@b=10 (b) b =50
10 10
— S e S
3087/ 0.8 /
506 / 506
g 047 Average (no attack) ﬁ 041 average (no attack)
§oa2l MDA (ittle) So2 MDA little)
MDA (empire) MDA (empire)
0.0 ! : | | 00 ! : |
o 200 400 600 800 1000 200 400 600 80 1000
Step number Step number

Figure 5: Training process of SVM with Gaussian Noise
and batch size b = 10, 50, 100, 500

The plots on SVM demonstrate similar patterns as the
ones on CNN. An intuitive explanation is that, the introduc-
tion of Gaussian Noise modifies the original gradient and
therefore interferes with the learning process, while larger
batch size yields larger and more stable gradients, making
the noise added less influential and more negligible.

Mttps://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Across the two models CNN and SVM, we would also
like to make a point qualitatively here by comparing 3d
and Sc that, batch size is indeed required to increase as the
model parameter size grows. For SVM whose parameter
size dsym = 69, with both data privacy and Byzantine re-
silience preserved, batch size b = 100 is nearly sufficient
for the learning process to recover to normal; on the other
hand, for CNN whose parameter size d.,, = 431080, when
combining both data privacy and Byzantine resilience, the
learning process does not recover until batch size b = 500
is reached.

4.2. Using Gradient Sparsification as the Data Pri-
vacy Algorithm

Using gradient sparsification (with the pruning propor-
tion chosen to be 25%) as the data privacy algorithm in
place of Gaussian noise yields the plots as 6 with batch size
b =10, 50, 100, 500.

.08 ///‘/ .08 ‘\/‘/
g 06 / 4 E 06 ”w
g 04 | —— Average (no attack) ﬁ 041/ —— Average (no attack)
So2d MDA (little) o2l MDA (little)
MDA (empire) MDA (empire)
oo 200 400 600 800 1000 oo 200 400 600 800 1000
Step number Step number
(ab=10 (b) b =50
10 - 10 —— —
508 /» 508
gooi/ gos
004 I —— Average (no attack) 004 —— Average (no attack)
g 8
Soz MDA (ittle) So2 MDA (iittle)
MDA (empire) MDA (empire)
o0 200 400 600 800 1000 oo 200 400 600 800 1000
Step number Step number

Figure 6: Training process of CNN with Gradient Sparsifi-
cation and batch size b = 10, 50, 100, 500

Still, we observe the phenomenon that a larger batch size
is important for the Byzantine-resilient model to learn well
with the alternative data privacy algorithm, gradient sparsi-
fication. We would like to conclude that the new VN condi-
tion is not specific to Gaussian noise, but is more likely to
apply generally to data privacy algorithms.

4.3. Reconstructing training images from gradients

We first follow [21] and evaluate on reconstructing train-
ing images from gradients. We train a LeNet[!5] model
on CIFAR-100[14] dataset. In the middle of the training,
we initialize dummy images and dummy gradients, and use
training gradients calculated from a batch to minimize the
difference between the two gradient sets. Figure 7 shows
reconstruction results for batch size b = 1 and b = 4 re-
spectively.

We run 300 steps when batch size is 1 and 1000 steps
when batch size is 4. [21] claims that reconstruction is pos-

Reconstructed Reconstructed
.

Figure 7: Reconstruction result with LeNet when batch size
@b=1Mbb=4

Original Reconstructed Original Reconstructed

(@) (b)

Figure 8: Reconstruction result with ResNet32 for batch
size 100 (a) most recognizable (b) average result

sible when batch size is greater than 1. However, we find
out that this conclusion is data-specific and in most cases
we get meaningless noise for greater batch size, although
the difference between gradients are minimized.

Then we follow [9] to train a larger ResNet32 network
for reconstructing gradients from CIFAR-100 datasets. We
set batch size to be 100, one image for each class. The
reconstruction result is shown in Figure 8.

We find that even the most recognizable classes (i.e.
bowl) have conspicuous artifacts. On average, the original
classes (i.e. table) can hardly be recognized from the recon-
structed images. What’s worse, the network is trained for
more than 20,000 steps to produce reconstruction results,
which takes more than 12 hours. Therefore, we believe that
it is impractical for the master server to reconstruct data on
the fly from gradients when batch size is large. Enlarging
batch size provides enough data privacy for distributed ML.

5. Discussion

Our assumption and induction are mainly based on view
of the VN ratio condition and gradients. From a broader
view of distributed ML systems, we believe there can be
also other practical solutions to the problem, such as detec-
tion of Byzantine gradients by suspicion-based GARs[8],
more crafted protocols to exchange gradients, etc.

In addition, although relaxing VN ratio condition pro-
vides theoretical improvements on the upper bounds for
combining data privacy and Byzantine resilience, previous
analysis is based on the assumption of Gaussian noise. We
believe it is possible to derive tighter upper bounds from a
theoretical point of view if Gaussian method is replaced.

6. Conclusion

We confirm that including data privacy via Gaussian
noise injection in the meantime of preserving Byzantine re-
silience in a distributed ML system makes it more difficult
to converge, and the learning ability recovers as the batch
size increases. Our finding shows that the noise injection
may not be the best method to achieve data privacy in a dis-
tributed ML system where Byzantine nodes is a problem.
The key point of ensuring data privacy should be the batch
size, regardless of which of the current data privacy method
is used. A large enough but feasible batch size may ensure
data privacy and Byzantine resilience at the same time, and
future work can explore a relationship for aggregating pri-
vacy and Byzantine resilience with respect to batch size.

7. Work Distribution

Qingyi Chen ran experiments on verifying [11], im-
plemented and experimented gradient sparsification, litera-
ture reviewed papers on data leakage through gradients and
combining data privacy and Byzantine resilience, and wrote
the report.

Yile Gu conducted experiments on verifying [11], im-
plemented data reconstruction from gradients with varying
batch size, evaluated results from [21] and [9] and reviewed
papers on combining data privacy and Byzantine resilience,
and wrote the report.

Lilong Teng reviewed literature on differential privacy
and Byzantine resilience in SGD [! 1] and combining dif-
ferential privacy and Byzantine resilience [10], and write
up the background, related work and conclusion.

References

[1] M. Baruch, G. Baruch, and Y. Goldberg. A little is enough:
Circumventing defenses for distributed learning, 2019. 2, 4

[2] P.Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer.
Machine learning with adversaries: Byzantine tolerant gradi-
ent descent. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. 2, 3

[3] P.Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Staine.
Machine learning with adversaries: Byzantine tolerant gradi-
ent descent. International Conference on Neural Information
Processing Systems, 2017. 2

[4] L. Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141-142, 2012. 4

[5] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen. Com-
munication quantization for data-parallel training of deep
neural networks. In 2016 2nd Workshop on Machine Learn-
ing in HPC Environments (MLHPC), pages 1-8, 2016. 3

[6] C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Automata, Languages

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

and Programming, pages 1-12, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. 2

E.-M. El-Mhamdi, R. Guerraoui, A. Guirguis, L. N. Hoang,
and S. Rouault. Genuinely distributed byzantine machine
learning, 2020. 2, 3

A. Galakatos, A. Crotty, and T. Kraska. Distributed machine
learning, 2018. 1

J. Geiping, H. Bauermeister, H. Droge, and M. Moeller. In-
verting gradients — how easy is it to break privacy in feder-
ated learning?, 2020. 4, 6, 7

R. Guerraoui, N. Gupta, R. Pinot, S. Rouault, and J. Stephan.
Combining differential privacy and byzantine resilience in
distributed sgd, 2021. 2, 3,7

R. Guerraoui, N. Gupta, R. Pinot, S. Rouault, and J. Stephan.
Differential privacy and byzantine resilience in sgd: Do they
add up?, 2021. 1,2, 3,4,7

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015. 3

A. Jochems, T. M. Deist, 1. E. Naga, M. Kessler, C. Mayo,
J. Reeves, S. Jolly, M. Matuszak, R. T. Haken, J. van Soest,
and et al. Developing and validating a survival prediction
model for nsclc patients through distributed learning across
3 countries, 2017. 2

A. Krizhevsky, V. Nair, and G. Hinton. Cifar-100 (canadian
institute for advanced research). 6

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998. 6

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scal-
ing distributed machine learning with the parameter server,
2014. 1

E. M. E. Mhamdi, R. Guerraoui, and S. Rouault. The hidden
vulnerability of distributed learning in byzantium, 2018. 2, 3
C. Xie, O. Koyejo, and I. Gupta. Zeno: Distributed stochastic
gradient descent with suspicion-based fault-tolerance, 2019.
6

C. Xie, S. Koyejo, and I. Gupta. Fall of empires: Breaking
byzantine-tolerant sgd by inner product manipulation, 2019.
2,4

D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett.
Byzantine-robust distributed learning: Towards optimal sta-
tistical rates, 2021. 2

L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients,
2019. 1,2,3,4,6,7

