
Enabling Loop Fusion in LLVM by Moving
Intervening Code

Julia Aoun, Qingyi Chen, Mohamad Eter, Yile Gu, Musa Haydar

I. INTRODUCTION

Loop fusion is a loop optimization technique that attempts
to combine multiple loops into a single one. Loop fusion may
create slight improvements in overall program performance for
some programs, particularly due to the removal of branching
instructions. Previous work argues that loop fusion can cre-
ate opportunities for other loop optimizations, such as loop
distribution or software pipelining, to make better decisions
when optimizing a program [2]. Furthermore, loop fusion may
directly improve data locality if accesses to the same cache line
are brought closer together [4].

Currently, a loop fusion pass is implemented for LLVM
based on the algorithm presented in [1]. In order for loop
fusion performed, the following criteria must be met for the
two loops 1:

1) The loops must be adjacent (i.e. there are no instructions
between the two loops).

2) The loops must be conforming (i.e. they must execute
the same number of iterations).

3) The loops must be control flow equivalent (i.e. both
loops must be guaranteed to execute together).

4) The loops must have no negative distance dependencies
between them.

Previous work discusses code transformations that seek to
alleviate these requirements for loop fusion [1], [2]. However,
the current pass does not perform these code transformations
to enable loop fusion when these conditions are not met.
One particular transformation is Moving Intervening Code
(MIC), where instructions and basic blocks that occur between
two fusion candidate loops are moved to adjacency between
the two loops. Intervening code may be moved above the
first fusion candidate or below the second, contingent on
the dependencies between the intervening code and the two
loops, respectively. The intervening code itself must also be
considered safe to move to ensure the correctness of the
resulting program. Once the intervening code has been moved,
the loop fusion pass can run as before on the now-adjacent
loops.

Our main contribution is an implementation of a Moving
Intervening Code algorithm in the LLVM loop fusion pass2.
In §II, we discuss the existing LLVM loop fusion pass and

1The LLVM implementation of the loop fusion pass is available
at https://llvm.org/doxygen/LoopFuse 8cpp source.html or on the LLVM
GitHub repository. The criteria for loop fusion are listed as described in the
source code.

2Our implementation of the extended loop fusion pass is available on
Github: https://github.com/musahaydar/eecs583-loop-fusion

the necessary conditions to run it in more detail. Then, in
§III, we discuss the design and implementation of our Moving
Intervening Code algorithm. Finally, in §IV, we discuss our
evaluation of this algorithm.

II. LOOP FUSION IN LLVM

A. Implementation

In this section, we describe the current implementation of
loop fusion as an LLVM pass. The implementation is based
on the algorithm presented in [1]. It begins by considering
the set of loops for a function. Control equivalent loops
are considered fusion candidates and put into control-flow-
equivalent sets sorted by dominance. Only loops with a single
exit are considered for fusion. The loops in this set are then
considered as pairs and the conditions for loop fusion are
checked.

First, the loop fusion pass checks if the two fusion candi-
dates are conforming (i.e. that they have the same trip count).
If the trip count for either loop cannot be determined, the
pair is skipped. The loop fusion pass will also attempt to peel
the first loop (i.e. unroll some iterations) to make the loops
conforming; the maximum allowed peel count is specified
as a flag to the pass. Next, the pass checks that the fusion
candidates are adjacent. Specifically, it ensures that the exit
block of the first fusion candidate is the preheader of the
second. Finally, if any negative distance dependencies are
found between the loops, the pair is skipped.

Once it is determined that the fusion candidates meet all
these criteria, the loop fusion can begin. First, any instructions
in the preheader of the second loop must be hoisted into the
first loop’s preheader or sunk below the loop. If neither of
these transformations is legal, the pair is skipped. The second
loop’s empty preheader will be removed. Then, the latch (the
block with a branch to the header) of the first loop is modified
to jump to the header of the second loop, and the latch of
the second loop is modified to jump to the header of the first.
Finally, all blocks are moved from the second to the first loop.

B. Running the Loop Fusion Pass

In order to run the loop fusion pass on LLVM bitcode, a
few conditions must be met. First, the loops must be in rotated
form so that the exit block of the first fusion candidate is equal
to its latch. This can be accomplished by running the loop-
rotate before loop fusion. If the loops are not in rotated form,
the loop fusion pass cannot proceed.

The loop fusion pass must also be able to compute the
trip counts of all the fusion candidates. By default, when

1

https://llvm.org/doxygen/LoopFuse_8cpp_source.html
https://github.com/musahaydar/eecs583-loop-fusion


1 move_intervening_code:
2 initialize vectors move_up and move_down
3 for each intervening BasicBlock B:
4 movable = false
5 if !dependant(B, FC0):
6 add to move_up
7 movable = true
8 if !dependant(B, FC1):
9 add to move_down

10 movable = true
11 if !movable:
12 return false //loops not fusible
13 if move_up == set of intervening BBs:
14 move intervening code above LC0
15 return true
16 else if move_down == set of intervening BBs:
17 move intervening code below LC1
18 return true
19 else:
20 return false //loops not fusible

Listing 1. High-level psuedocode for our implementation of the
Moving Intervening Code algorithm.

compiling a benchmark in Clang with all LLVM optimizations
disabled, the loop increment variable will be stored in memory.
However, it must be in a register in order to be computable.
The variable can be moved to a register in the bitcode by
running the mem2reg LLVM pass. The mem2reg pass may
introduce unnecessary phi nodes into the bitcode (i.e. phi
nodes with only one value), which may prevent the pass
from proceeding in the case where this node is detected as
intervening code by the loop fusion pass. These phi nodes can
be eliminated by running the instcombine pass.

It is also possible that, once these instructions are removed,
empty basic blocks (i.e. basic blocks containing only a single
branch to a single successor block) remain in the program,
which similarly inhibits the loop fusion pass since they are
detected as intervening code. To enable loop fusion in this
case, we run the simplifycfg pass, which eliminates the empty
basic blocks.

III. MOVING INTERVENING CODE

In this section, we discuss our main contribution: an imple-
mentation of the Moving Intervening Code algorithm within
the LLVM loop fusion pass. An overview of the algorithm
is shown in Listing 1, and is explained here in more detail.
The function move intervening code is called after the pass
detects that the loops are not adjacent. It attempts to move the
intervening code at the basic block level. If the intervening
code is successfully moved, the function returns true, and the
pass proceeds to fuse the loops.

We initialize two vectors, move up and move down, that
will contain the blocks which we’ve determined can be moved
above the first fusion candidate FC0 or below the second
fusion candidate FC1, respectively. We say a basic block is
dependent on a loop if any of its instructions depend on any of
the instructions in the loop candidates. For each basic block,
we iterate through the instructions and check if any of them
depend on the instructions in FC0 and FC1.

We consider three types of data dependencies between
the instructions in the fusion candidates and instructions in
the intervening code: read-write, write-write and write-read
dependencies. If no such dependencies exist between the
intervening block and FC0, we add it to the move up vector.
Similarly, if no dependencies exist between the intervening
block and FC1, we add it to the move down vector. If any
basic block cannot be moved, then we’ve determined that
cannot move all of the intervening code blocks, so the loops
cannot be fused.

Once we’ve determined if all of the basic blocks can be
moved, we compare the move up and move down vectors
with the set of intervening basic blocks. If all of the intervening
basic blocks can be moved either above the first fusion
candidate or below the second, then we are free to move them.
If not, we say that the intervening code cannot be moved.

As our approach moves all the intervening code together,
we take the following approach. We assume that the exit block
of FC0 contains nothing but intervening code. To move the
code up:

1) The successor of the preheader of FC0 is set to be the
exit block of FC0 (the first block of intervening code)

2) The preheader of FC1 (the last block of intervening
code) has its successor updated to be the entry block
of FC1

3) The successor of the exit block of FC0 is set to be entry
block of FC1

For each of these steps, the phi nodes must also be updated
appropriately. Once these transformations have been com-
pleted, the intervening code will have been entirely moved
above FC0, take the place of it’s preheader. At this point,
the two loop bodies are adjacent, so that loop fusion can
proceed. Moving code below the second loop is a similar
transformation.

A. Limitations

Some programs may introduce intervening code such that
some portion of it may only be moved above the first loop
while another portion may only be moved below the second
loop, due to dependencies between the intervening code and
both loops respectively [2]. While our implementation moves
all the intervening code together, a potential improvement to
our algorithm would support this case. To do so, it must
consider the dependencies not only between the fusion can-
didates and the intervening code, but also among the blocks
of intervening code themselves. Control dependencies present
a particular challenge here. Consider the intervening code in
Listing 2. Here, the statement on line 14 can only be moved
if the if-statement which guards it is moved along with it.

Another potential improvement would be the inclusion of
a profitability analysis. It has been shown that loop fusion
does not improve program performance in all cases, and in
some cases may even hinder other optimizations. This may
be due to increased register pressure, cache misses, or the
creation of additional control flow [2], [5]. Currently, LLVM’s
loop fusion pass has a function stub for determining if fusion

2



1 int main() {
2 int x = 1;
3 int y = 1;
4 int z = 0;
5

6 scanf("%d", &z);
7

8 for (int i = 0; i < 5; ++i) {
9 x = x + i;

10 }
11

12 y = z;
13 if (z) {
14 z = y * 5;
15 }
16

17 for (int j = 0; j < 5; ++j) {
18 y = y * (1 + j);
19 }
20

21 printf("x: %d y: %d\n", x, y);
22 printf("z: %d \n", z);
23 }

Listing 2. The example with which we tested the improved loop
fusion pass. The intervening code on lines 13-16 should be moved
above the first loop, and then the loop should be fused.

12 if (z) {
13 z = x * 5;
14 }

between two candidates is profitable, which always returns
true, such that the loop fusion pass tries to fuse as many loops
as possible. However, by moving intervening code, we may
block the fusion of other, more profitable fusion candidates,
and the potential for performance decreases still exists.

Finally, not all intervening code may be moved. In par-
ticular, instructions that may have side effects (e.g. function
calls, volatile memory accesses, I/O operations) are considered
unsafe to move in prior work [2]. A potential improvement
is to broaden the criteria for movable intervening code by
detecting which of these operations are actually safe despite
their side effects.

IV. EVALUATION

We evaluated our improved loop fusion pass with the
example program presented in Listing 2. Here, there are two
loops that would be fusible since they are conforming, control-
flow equivalent, and do not contain any negative distance
dependencies. However, there is intervening code on lines
13-16, such that the loops are not adjacent. The intervening
code depends on an input unknown until runtime (the scanf
call on line 7), making this example less trivial—using only
constant values can result in the intervening code being sunk
after constant value propagation when running the benchmark
with LLVM optimizations enabled.

In Listing 2, the intervening code modifies the value of y
such that, if the code is moved below the second loop, the
print statement on line 21 would output a different value than
expected. However, since the intervening code does not depend
on the variable x which is produced by the first loop, the

Fig. 1. The control-flow graph for the example program in Listing 2 before
moving intervening code and loop fusion (left) and after (right).

Benchmark Time # Instr. Executed

MIC Up (Not Fused) 4.28 sec. 25 billion
MIC Up (Fused) 2.59 sec. 22 billion

MIC Down (Not Fused) 4.35 sec. 25 billion
MIC Down (Fused) 2.62 sec. 22 billion

Fig. 2. The results of running our contrived example for moving intervening
code up (Listing 2) or down (Listing 3), with the loop iterating one billion
times.

code can be raised above the first loop safely, and the loops
may be fused. Listing 3 presents a slight modification to the
intervening code such that y is no longer overwritten by the
intervening code, and it instead depends on the value of x.
In this case, moving it above the first loop is unsafe since it
depends on the x produced by it. However, it can be safely
moved below the second loop.

As the intervening code in this example makes the fusion
candidates non-adjacent, LLVM’s current loop fusion algo-
rithm is unable to fuse the loops. However, we are able to
move the intervening code in Listing 2 above the first fusion
candidate and then allow the loop fusion pass to continue and
fuse the loops. The result of the MIC transformation followed
by loop fusion for Listing 2 is illustrated by the control-flow
graphs in Figure 1.

To evaluate our MIC algorithm, we ran the contrived

3



example in Listing 2 which requires moving the intervening
code up, as well as the example in Listing 3, which requires
moving it down. We changed the loop iteration count from five
to one billion to make the impact more clear. We compare the
total execution time and the number of dynamic instructions
in each test case. We use Linux time command to collect
execution time information and a Pin tool [3] to count the
number of dynamic instructions. The results are listed in the
table in Figure 2. We find that, on these examples which run
two loops of a billion iterations each, the binary which has
the loops fused achieves around a 40% decrease in run time
and around a 12% decrease in dynamic instructions executed.

It seems that, from the control flow graphs presented in
Figure 1, the improvement in performance is due to the
reduction in the number of branches that need to be executed.
Specifically, the bodies of the two loops are combined such
that they are both guarded by the same loop branches.

V. CONCLUSION

The current LLVM loop fusion pass requires the loops to be
adjacent, making intervening code an obstacle to loop fusion.
We were able to move the intervening code to enable loop
fusion by evaluating if we can move the code above the first
fusion candidate or below the second fusion candidate. We
demonstrated that enabling loop fusion by moving intervening
code can have benefits in terms of run time and dynamic
instructions executed. The main limitation to removing in-
tervening code is at compile-time, as this MIC algorithm is
dependent on the number of instructions present in the loop
body and intervening basic blocks. In the future, additional
code transformations can similarly extend the existing loop
fusion pass to further enable loop fusion.

REFERENCES

[1] C. Barton, “Code transformations to augment the scope of loop fusion in
a production compiler,” Master’s Thesis, University of Alberta, January
2003.

[2] B. Blainey, C. Barton, and J. N. Amaral, “Removing impediments to loop
fusion through code transformations,” in Languages and Compilers for
Parallel Computing, B. Pugh and C.-W. Tseng, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 309–328.

[3] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 190–200. [Online].
Available: https://doi.org/10.1145/1065010.1065034

[4] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving data
locality with loop transformations,” ACM Trans. Program. Lang.
Syst., vol. 18, no. 4, p. 424–453, jul 1996. [Online]. Available:
https://doi.org/10.1145/233561.233564

[5] A. Qasem and K. Kennedy, “A cache-conscious profitability model
for empirical tuning of loop fusion,” in Languages and Compilers for
Parallel Computing, E. Ayguadé, G. Baumgartner, J. Ramanujam, and
P. Sadayappan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 106–120.

4

https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/233561.233564

	Introduction
	Loop Fusion in LLVM
	Implementation
	Running the Loop Fusion Pass

	Moving Intervening Code
	Limitations

	Evaluation
	Conclusion
	References

