
Yile (Michael) Gu
Address : 5555 14th Ave NW, Seattle, WA Mobile : +1 734-881-5477
Email : yilegu@cs.washington.edu / guyile1998@gmail.com Personal Website : https://ikace.github.io/

Education

University of Washington, Seattle, WA

Ph.D. in Computer Science and Engineering Sep 2023 - Present
Advisor: Prof. Baris Kasikci
Research Interests: Machine Learning Systems and Systems Reliability

University of Michigan, Ann Arbor, MI
M.S.E. in Computer Science and Engineering, Cumulative GPA: 4.00/4.00 Aug 2021 - May 2023
B.S.E. in Computer Science, Cumulative GPA: 3.96/4.00 Aug 2019 - May 2021
Award: James B. Angell Scholar, EECS Scholar, Dean’s List
Coursework: Compiler Construction, Advanced Operating System, Distributed System, Advanced Computer Vision

Shanghai Jiao Tong University, Shanghai, China
B.E. in Electrical and Computer Engineering, Cumulative GPA: 3.82/4.00, Rank: 11/253 Sep 2017 - Aug 2021
Award: Outstanding Graduate, Merit Student, Undergraduate Excellent Scholarship (Grade 2)(Top 10%)
Coursework: Programming & Data Structures, Intro to Signals & Systems, Intro to Logic Design, Electronic Circuits

Research Experience

Efes Lab, University of Washington May 2022 - Present

Project: Application-level Crash-consistency Bug Detection Supervisor: Prof. Baris Kasikci

◦ Spearheaded the development of an application level crash-consistency bug detection tool to address current issues with
sub-optimal testing space.

◦ Leveraged redundancy in programs’ update behaviors to build dependency graphs for pruning testing space.

◦ Developed a Pin tool to trace syscalls & mmap-IOs, and designed an algorithm to test systems with hybrid protocols.

◦ Assessed the efficacy of the tool on mmap-IO and persistent-memory applications, leading to 113 bug discoveries.

◦ Built an optimized exhaustive testing baseline to demonstrate that our tool can achieve a 32x crash-state reduction.

Symbiotic Lab, University of Michigan Aug 2022 - May 2023

Project: Energy Scheduling in Large Model Training Supervisor: Prof. Mosharaf Chowdhury

◦ Discovered the existence of energy bloat in large model training caused by fundamental computation imbalance, where
GPUs waste energy by running unnecessarily faster than the critical path of the computation.

◦ Represented training schedule as a directed acyclic graph (DAG), and designed a graph cut-based algorithm that
exclusively and efficiently enumerates all energy schedules on the “iteration time-energy” Pareto frontier.

◦ Evaluated on large models including GPT3 that our system reduces energy consumption by up to 28.5% without
slowdown in training time, with negligible 6.5-minutes average time for the algorithm. Open-sourced at Perseus.

Project: Privacy-enhancing Federated Learning (FL) Platform

◦ Identified issues with existing FL platforms which lack fundamental support for privacy accounting under different
workloads and various types of heterogeneity.

◦ Containerized core components of FedScale using Docker for flexible deployment to different operating systems.

◦ Built a Kubernetes-based coordinator to enable load-balancing support and handle simulated and real FL workloads.

◦ Designed a privacy-accounting client selector prototype maximizing FL job utility while respecting privacy budget.

Work Experience

ByteDance Ltd, Shanghai, China May 2020 – Aug 2020

Software Engineering Intern

◦ Contributed to a cross-platform mobile application framework with native UI features using C++ and Objective-C.

◦ Detected and resolved performance bugs in the framework, including a serious memory leak due to circular reference.

◦ Developed customized components with improved efficiency in rendering logic for mobile application developers.

Professional Service

◦ Artifact Evaluation Committee: OSDI 2023, ATC 2023

◦ Student Volunteer: NSF NeTS PI Meeting 2023

mailto:yilegu@cs.washington.edu
mailto:guyile1998@gmail.com
https://ikace.github.io/
https://ml.energy/zeus/perseus/
https://fedscale.ai/


Peer-reviewed Publications

[1] Squint: Scalable and Accurate Application-level Crash-Consistency Testing via Representative Testing,
Yile Gu∗ , Ian Neal∗, Musa Haydar, Hossein Golestani, Ayman Said, Andrew Quinn, Baris Kasikci. Under
submission.

[2] Fiddler: CPU-GPU Orchestration for Fast Inference of Mixture-of-Experts Models, Keisuke Kamahori, Yile
Gu, Kan Zhu, Baris Kasikci. Under submission. https://arxiv.org/abs/2402.07033.

[3] Perseus: Removing Energy Bloat from Large Model Training, Jae-Won Chung, Yile Gu, Insu Jang, Luoxi
Meng, Nikhil Bansal, Mosharaf Chowdhury. Under submission. https://arxiv.org/abs/2312.06902.

Selected Projects

Enabling Loop Fusion in LLVM by Moving Intervening Code, University of Michigan

◦ Observed that current LLVM implementation of loop fusion, a powerful compiler optimization that enables better loop
distribution and software pipelining, requires unnecessarily strict matching criteria.

◦ Designed an algorithm attempting to move intervening code before loop fusion if two loop candidates are not adjacent
by analyzing data dependencies and determining the correct location for the intervening code.

◦ Evaluated on microbenchmarks that our algorithm achieves a 40% reduction in running time and a 12% decrease in
dynamic instructions executed on average.

Understanding Data Privacy and Byzantine Resilience in Distributed ML, University of Michigan

◦ Observed theoretical upper bound for combining data privacy and Byzantine resilience with batch size as a bottleneck.

◦ Determined that a large batch size is required for the convergence of CNN models under Gaussian noise injection.

◦ Applied gradient sparsification for privacy amplification to account for the fundamental privacy-utility trade-off.

◦ Discovered that batch size directly correlates with attackers’ ability to reconstruct individual images from gradients.

Decaf Compiler, University of Michigan

◦ Built a lexical analysis scanner using Flex as well as a syntax analysis parser that generates AST based on Bison.

◦ Implemented a semantic analyzer that performs scope and type checking and supports single class inheritance.

◦ Created a code-generator for TAC instructions with a register allocator that constructs CFG for liveness analysis and
uses Chaitin’s algorithm on the interference graph for the k-coloring problem.

Teaching

GSI of Foundation of Computer Science, University of Michigan Jan 2022 – May 2022 & Aug 2022 - Dec 2022

IA of Academic Writing II and Fantasy Literature, UM-SJTU Joint Institute Feb 2019 - Aug 2019

Skills

◦ Programming: C++, Python, JavaScript, SQL Markup Languages: HTML, LATEX, Markdown

https://arxiv.org/abs/2402.07033
https://arxiv.org/abs/2312.06902

	Education
	Research Experience
	Work Experience
	Professional Service
	Peer-reviewed Publications
	Selected Projects
	Teaching
	Skills

